Do Now

- Write an example of how an object can gain a charge from induction and friction.
- Induction:

Today

- Finish Statics
- Sticky Tape Lab
- Electroscope Activity
- Begin Coulomb's Law

Stick Tape

- You will need one set of directions per lab table.
- You will each need your own data sheet and follow up questions.

Demo: Part I

- Two lines of tape.
- Each line has two layers.
- Each piece has a handle.

Demo: Part 2

- 2 columns of tape.
- 3 pieces: Top (T), Bottom (B) and Base
- Figure in 11: F is foil and P is paper.
- Look for specific demonstration.

Summary Page

- Sketch and label your observations for procedure numbers 5, 8, 9, and 13 as directed.
- Make sure to label the forces that are acting on each material.
- Remember Newton's 3rd: action and reaction. Forces in pairs.

Thoughts Page

- Answer all questions in full sentences.
- Label all diagrams.
- Finish for homework if we move on before you finish.

Electric Potential

 The more charges are separated, the more electrical energy will be discharged when the system returns to equilibrium.

Ohm's Law Ω

- V=IR
- V is voltage
- I is current
- R is resistance

Units of V=IR

- Voltage (V): volts
- Current (I): amps
- Resistance (R): ohms

Pipe Pressure Metaphor

- Voltage: supply of water put into a pipe.
- Resistance: radius of the pipe.
- Current: flow rate of pipe.

Focus on the Positive

- When we talk about circuits, we imagine that the charge is moving from the positive to the negative terminals of a battery.
- The positive end of a battery has a high potential energy.
- The negative end, a low one.

Volts

- Change in electrical potential.
- A charge gives off energy when if goes through a resister (ex: lightbulb).
- The difference in electrical potential energy is referred to as a voltage drop.

Volts and Work

- As the voltage drops, energy transferred.
- The electrical potential energy is transformed.
- Work is performed on the system.

V=IR

- Problem solving:
 - Knowns:
 - Unknown:
 - Equation:V=IR

A 9 volt battery is attached to a circuit with a light bulb with a 30 Ω bulb. Find the current in the circuit.

A curling iron has a resistance of 18 Ω . If the wall socket provides 120 volts, what is the current in the wire?

Electrical Power [watts]

- P = V I
- $\mathbf{P} = \mathbf{R} \, \mathbf{I}^2$
- $P = V^2 / R$

A microwave requires 1200 watts of power. If the plug supplies 120 volts, what is the current in the wire? A microwave requires 1200 watts of power. If the plug supplies 120 volts, what is the resistance of the appliance? An iron has a power rating of 1000 watts. What is the voltage from the power supply if the resistance is 140 Ω ?

Homework

- You will have to convert kWhour into joules.
- Use dimensional analysis.
- Ask questions about problems that you have.
- Finish it overnight.